Skip to main content
Log in

Nano-structure tin/nitrogen-doped reduced graphene oxide composites as high capacity lithium-ion batteries anodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin/graphene-based composites were synthesized as easy-to-prepare alternative anode materials in lithium-ion batteries (LIBs). Reduced graphene oxide (rGO) was obtained from the oxidation of pristine graphite by modified Hummers’ method followed by thermal treatment at 500 °C for 5 h under N2 atmosphere. Nitrogen-doped graphene (NrGO) sheets were prepared via thermal annealing of rGO and melamine (1:5 by weight) at 800 °C for 1 h under N2 environment. The chemical reduction method was used to synthesize the composites. The Sn content in Sn/rGO and Sn/NrGO was varied as 10 and 20 wt%. The rGO and NrGO supporting materials had large surface areas and were exfoliated graphite structure. The powder X-ray diffraction patterns showed that Sn/rGO and Sn/NrGO composites contained Sn and graphene-based supporter. The electron microscopic measurements granted the composite morphology, in which they consisted of small Sn particles anchored on rGO and NrGO surfaces. The 20Sn/rGO and 20Sn/NrGO composites delivered large reversible specific capacities of 793 and 755 mAh g− 1, respectively, at a current density of 100 mA g− 1. The prepared composites also provide high stability, indicating the promising anode performance for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.E. Aifantis, S.A. Hackney, R.V. Kumar, High Energy Density Lithium Batteries. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010)

    Book  Google Scholar 

  2. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 252 (2015)

    Article  CAS  Google Scholar 

  3. H. Wu, Y. Cui, Nano Today 7, 414 (2012)

    Article  CAS  Google Scholar 

  4. M.S. Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S.H. Lee, P. Kim, J. Hone, W.J. Yoo, Nat. Commun. 4, 1624 (2013)

    Article  Google Scholar 

  5. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater. 26, 3484 (2014)

    Article  CAS  Google Scholar 

  6. W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, M.-S. Cao, J. Mater. Chem. C 3, 10017 (2015)

    Article  CAS  Google Scholar 

  7. H. Kim, K. Park, J. Hong, K. Kang, Nat. Publ. Gr 4, 1 (2014)

    Google Scholar 

  8. G. Ali, A. Mehmood, H.Y. Ha, J. Kim, K.Y. Chung, Nat. Publ. Gr 7, 1 (2017)

    Google Scholar 

  9. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2010)

    Article  CAS  Google Scholar 

  10. D. Cai, S. Wang, P. Lian, X. Zhu, D. Li, W. Yang, H. Wang, Electrochim. Acta 90, 492 (2013)

    Article  CAS  Google Scholar 

  11. X. Li, D. Geng, Y. Zhang, X. Meng, R. Li, X. Sun, Electrochem. Commun. 13, 822 (2011)

    Article  CAS  Google Scholar 

  12. A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, ACS Nano 4, 6337 (2010)

    Article  CAS  Google Scholar 

  13. H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, G. Cui, J. Mater. Chem. 21, 5430 (2011)

    Article  CAS  Google Scholar 

  14. Z.-S. Wu, W. Ren, L. Xu, F. Li, H.-M. Cheng, ACS Nano 5, 5463 (2011)

    Article  CAS  Google Scholar 

  15. J. Song, X. Wang, C.-T. Chang, J. Nanomater. 2014, 6 (2014)

    Google Scholar 

  16. C. Fu, G. Zhao, H. Zhang, S. Li, Int. J. Electrochem. Sci. 8, 6269 (2013)

    CAS  Google Scholar 

  17. Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, ACS Nano 5, 4350 (2011)

    Article  CAS  Google Scholar 

  18. E.J. Heller, Y. Yang, L. Kocia, W. Chen, S. Fang, M. Borunda, E. Kaxiras, ACS Nano 10, 2803 (2016)

    Article  CAS  Google Scholar 

  19. C. Nithya, S. Gopukumar, ChemSusChem 6, 898 (2013)

    Article  CAS  Google Scholar 

  20. J. Qin, C. He, N. Zhao, Z. Wang, C. Shi, E.-Z. Liu, J. Li, ACS Nano 8, 1728 (2014)

    Article  CAS  Google Scholar 

  21. S. Liang, X. Zhu, P. Lian, W. Yang, H. Wang, J. Solid State Chem. 184, 1400 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Center of Excellence in Materials Science and Technology under the Administration of Materials Science Research Center of Chiang Mai University, Graduate School of Chiang Mai University, the Center for Innovation in Chemistry, Postgraduate Education and Research Program in Chemistry (PERCH-CIC), and the Promotion of Science and Technology Talented Project (DPST) under the Royal Thai Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thapanee Sarakonsri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarulertwathana, N., Laokawee, V., Susingrat, W. et al. Nano-structure tin/nitrogen-doped reduced graphene oxide composites as high capacity lithium-ion batteries anodes. J Mater Sci: Mater Electron 28, 18994–19002 (2017). https://doi.org/10.1007/s10854-017-7853-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7853-y

Navigation